Computers manipulate binary patterns. Patterns can represent signed or unsigned integers.
(i) Convert the denary number 57 to 8-bit binary.
(ii) Convert the binary number 00101101 to hexadecimal.
(iii)

In arithmetic, subtraction can be done by adding a negative number.
Calculate $18-8$, using 8-bit binary and two's complement.
Convert the result back to denary.
Show all your working.
(iv)

Complete the table to show the result of the 8-bit binary addition.

0	1	0	0	0	0	0	1
0	1	1	0	0	1	1	0

(v).

Construct an expression to calculate the file size, in mebibytes, of a CD quality (44.1 KHz , bit depth of 16), two-channel stereo soundtrack that is 4 minutes long.

You do not need to carry out the calculation.
(vi) Explain why hexadecimal notation is used.
(vii)Convert the denary number -33 to 8-bit binary using two's complement.

ANSWERS ON THE NEXT PAGE!

(viii) Identify the result of a single logical shift left on the 8-bit binary pattern 01010101.

A Addition B Division C Multiplication D Subtraction

ANSWERS

1. Convert the denary number 57 to 8 -bit binary.

1286432168421
$0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 01 \quad 32+16+8+1=57$
2. Convert the binary number 00101101 to hexadecimal

Split into nibbles 00101101
Convert to denary
84218421
$0010=2 \quad 1101=8+4+1=13$
Hex $=0-9, A=10, B=11, C=12, D=13, E=14, F=15$
The answer is 2D
3. Calculate 18-8, using 8-bit binary and two's complement.
$18=00010010(16+2)$
$-8=$ start with +800001000
Copy down all the bits up to and including the first 1, starting on the right (the LSB). Then flip the rest.
$11111000=-8$
Add the 2
00010010
$11111000+$
00001010 Check the answer.....this is $10.18-8$ is 10 so it is correct.
4. Binary rules: $0+0=0,0+1=1,1+1=0$ carry $1,1+1+1=1$ carry 1

Answer is 10100111
5. Sound file size in bits = sample rate (in Hertz) * time (in seconds) * bit depth
$44100(\mathrm{~Hz}) * 240$ (seconds) * 16 (bit depth) $=$ size in bits.
Now convert to MiB
$44100(\mathrm{~Hz}) * 240$ (seconds) * 16 (bit depth)
1024 * 1024 * 8
6. Hexadecimal is used to make it easier for humans to handle large binary numbers since 8 bits in binary (base 2) is represented in only 2 characters in hex (base 16).
7. Start with +33 and convert to binary. Then copy down the bits from the right hand side up to and including the first 1, then flip the rest. Check your answer! 11011111

