
Binary shifts

Logical (unsigned numbers)

Arithmetic (signed numbers)

Binary shifts move the bits in a number left or right, multiplying (left) or dividing (right) by powers of 2. Eg.

shift 1 place, multiply or divide by 2; shift 2 places multiply or divide by; shift 3 places, multiply or divide by

8 etc.

Left = multiply Right = divide

Logical shifts are applied to UNSIGNED numbers. These fill empty spaces with 0s.

Arithmetic shifts are applied to SIGNED numbers. A left arithmetic shift acts in the same way as a left

logical shift, filling empty spaces with 0s. A right arithmetic keeps the MSB (the left hand bit which holds

the sign) and fills all spaces with copies of the MSB.

Advantages and disadvantages of binary shifts

Advantage Explanation Disadvantage Explanation
Efficiency Binary shifts are very

efficient operations for
computers to perform.
Shifting bits requires
simpler logic compared
to multiplication or
division algorithms
making them faster to
execute.

Limited Functionality

They only work for
powers of 2.

Simplicity They are relatively
simple to understand
and to code especially
for logical shifts.

Overflow/Underflow – For arithmetic shifts,
there's a risk of
overflow (positive
number becomes too
large) or underflow
(negative number
becomes too small) if
not handled carefully.

Power of 2 operations They are great at
multiplying or dividing
by powers of 2 which
are common operations
in various computing
tasks like memory
addressing and image
editing

Potential loss of
precision

When right shifting
(dividing) there is a
potential loss of
precision depending on
the original number
because decimal
numbers aren’t
represented. So odd
numbers are rounded
down.

 Sign Bit Consideration For arithmetic right
shifts, it's important to
consider the sign bit to
preserve the original
number's positive or
negative value.

Questions

1. A logical binary shift moves the bits in a binary number to the left or right, filling the empty spaces with:

(a) Random bits

(b) 1s

(c) 0s

(d) The sign bit

2. What is the effect of a logical left shift 1 place on the value of a binary number?

(a) No change

(b) Reduces the value by half

(c) Increases the value by half

(d) Doubles the value

3. In an arithmetic right shift, the empty space created on the left side is filled with:

(a) Random bits

(b) 0s

(c) 1s

(d) The value of the most significant bit

4. An arithmetic right shift of 2 places on a signed binary number is equivalent to:

(a) Multiplying by 2

(b) Dividing by 2

(c) Multiplying by 4

(d) Dividing by 4

5. Which type of shift (logical or arithmetic) would be most appropriate when multiplying an unsigned

binary number by 2?

(a) Arithmetic right shift

(b) Logical right shift

(c) Logical left shift

(d) Arithmetic left shift

6. Explain the difference between a logical left shift and a logical right shift in terms of how they affect the

bits in a binary number.

7. Why is it important to consider the sign bit (MSB) when performing an arithmetic right shift?

8. In what scenario might you use a logical shift operation in your program?

ANSWERS

1. C) The spaces in a logical shift bitwise operation are filled with 0s.

2. D) Left shift by 1 place will multiply the value by 2.

3. D) The MSB is copied into empty bits in a right arithmetic shift.

4. D) Right shifts divide, whether logical or arithmetic. By 2 places, means divide by 4

5. C) Logical left shift. Logical because the number is unsigned. Left because the question asks about

multiplication

6. A logical shift is used on an unsigned number. A left shift results in the multiplication of the binary number.

In a left shift all the bits are moved to the left by the stated number of places. The empty bits on the right

are filled with 0. A right shift results in division of the binary number. All of the bits are shifted to the right

leaving spaces on the left-hand side. These spaces are filled with 0s.

7. An arithmetic shift is performed on a signed binary number. The MSB of a signed number holds the sign; 0

for positive and 1 for negative. It is important that the sign doesn’t change when performing a binary shift

because this would incorrectly change a negative number into a positive and vice versa.

8. A left logical shift would be used in a program when a binary number needed to be multiplied by a power of

2. An example of when this could be used would be in image editing. For example, doubling the size of an

image.

