
Explain why a programmer chooses a high-level language for a general-

purpose application and assembly language for a device driver. (6)

Create completed tables like the ones below as a plan before writing the

explanation.

Feature High-Level Language Assembly Language

Abstraction Level

Portability

Ease of Programming

Development Time

Readability

Application Type

Debugging

Hardware Access

Language Type Advantages Disadvantages

High-Level Language

Low-Level Language

https://ccrcomputing.weebly.com/uploads/1/1/5/0/11505618/longer_answer_questions.pdf

CLICK HERE!

ANSWERS

For long answer questions, begin with definition. In this case, define high-level language and assembly

language.

Then take a point and state it. Then explain it and link it to the context. Use the words from the question.

If the question is asking for advantages and disadvantages make sure you make it clear. If the question is

asking for comparisons, make sure you make the same point for each.

Good linking phrases to ensure explanation include…’because….’, ‘this means that’, ‘which means that’,

‘so that’

For example:

A high-level programming language is one written using English-like words and syntax that is easy for a

human to read and understand. Assembly language uses mnemonics which are less easy to understand

and harder to learn. (Definitions)

A programmer would use a high-level language to program a general-purpose app (Link to question)

because it would be faster than using assembly language (Point). This is because (Explanation) it will

have many built-in libraries and sub-programs for common tasks.

They would use assembly language to code a device driver (link to question) because it will produce

shorter, more efficient code and gives the programmer direct access to the hardware (Point). This means

that (Explanation) the programmer can directly work with the peripheral device concerned.

Feature High-Level Language Assembly Language

Abstraction Level Provides a high level of abstraction,
closer to human language

Assembly language is low-level,
directly interacting with the
hardware. It uses mnemonic codes
for instructions.

Portability High-level languages are machine-
independent. Code written in one
high-level language can run on
different platforms.

Assembly language programs are
machine-specific. They are tied to a
particular processor. They are not
portable without changes.

Ease of Programming High-level languages are easier to
learn and use. They offer built-in
functions, libraries, and abstractions
for common tasks.

Assembly language requires in-
depth knowledge of the hardware.
Programmers must manage
memory, registers, and errors
manually.

Development Time Faster development time due to
simpler syntax and in-built functions
and libraries

Slower development time due to
more detailed coding

Readability High-level code is readable by other
programmers. It uses meaningful
variable names and structured logic.

Assembly code can be harder to
understand. It lacks descriptive
names and relies on short
mnemonics.

Application Type High-level languages are ideal for
general-purpose applications, web
development, databases, and
business software.

Assembly language is suited for
device drivers, real-time systems,
and embedded programming where
efficiency is critical.

Debugging High-level languages provide
debugging tools,and error
messages. Debugging is easier.

Assembly debugging involves
manual inspection. It’s challenging
and time-consuming.

Hardware Access High-level languages abstract
hardware details. Direct hardware
access is limited.

Assembly language allows direct
manipulation of hardware
components. It’s essential for low-
level tasks like I/O control.

Language Type Advantages Disadvantages

High-Level Language - Easier to learn and use - Faster
development time - More portable -
More readable and maintainable -
Multiple libraries and in-built sub
programs save time and require less
skills

- Less efficient than low-level
languages - May require
additional resources to run -
Limited control over hardware

Low-Level Language - More control over hardware - More
efficient for specific tasks - Smaller
program size - Direct hardware
interaction

Difficult to learn and use - Time-
consuming development process
- Not portable - More prone to
errors - Requires in-depth
understanding of hardware

